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LETTER TO THE EDITOR 

Nucleation theory versus cluster aggregation 

Z Alexandrowicz 
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 761CQ, 
Israel 

Received 19 April 1993 

Abstract. According to classical nucleation theory (m), clusters are produced with the 
help of a reversible gain of single molecules, with no cluster-cluster aggregation. 
Simulations at T -  T, seem to disagree. We show that, when a growing embryo cluster 
aggregates with clusters OF any size d21. the dominant mntqbution is of d =  1 (single 
molecules). Production of the biggest clusters obeys, therefore, CM. Production of other 
clusters, however, is modified by their slow rate determining aggregation with the biggest. 
The t h e o j  fits excellently the simulations and for the f is t  time combines aggregation with 
CLT. ’ 

Classical nucleation theory (CNT). associates the onset of a homogeneous phase 
transition with production of clusters .(Becker and Doring 1935). It derives a rate 
equation dnJdt, where n, is the number of clusters of sue  s at time t. Thus 

Here n3( m )  is the equilibrium value of n,, @$ =n5/ns( m) and R, is a rate constant. The 
derivation of (1) assumes a back and forth variation of cluster size, in steps of one 
molecule. scts l  1. The possible occurence of cluster-cluster aggregation and frag- 
mentation is ignored, but no supporting argument has ever been offered. Stauffer 
(1992a) has recently proposed a test of (1): Integration from s to m , gives 

(dnJdt),=d [R,n,( m)(d@Jds)]/ds. (1) 

R6=S(s)/(d@Jds) whereS(s)=n,( a)-’ (2) 

Both S(s) and d@Jds can be measured directly in a simulation (unfortunately only for 
small clusters), Simulations of Ising lattices at T B  T, and T 9  T, show that the rate 
constants R, indeed settle down to  reasonable constant value. At T -  T, however, R, 
appears to decrease with t indefinitely (Stauffer 1992a, Stauffer 1992b, Behrens and 
Stauffer 1993). Also. .the deviations. deqy  to equilibrium, not as expected 
exponentially @‘K exp(-const9). but as a power law @$= tP.  What comes to mind of 
course is to blame the neglect of cluster-cluster aggregation by CNT. The present letter 
studies a reversible aggregation of a growing embryo s-cluster with ‘dust’ clusters of 
any size d a  1, and shows that it occurs mainly with smallest dust d-1. This justifies 
the CNT assumption that growth proceeds in s-s+ 1 steps. However, except for the 
biggest clusters, dnJdt is modified by the aggregation with clusters larger 
than s. 

Let us consider a reversible growth of ‘critical’ clusters, resulting from thermal 
motion at T- T,. Taking the king model as an example, the clusters represent regions 
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of completely correlated up (down) spins (Fortuin and Kasteleyn 1972, Coniglio and 
Klein 1980, Swendsen and Wang 1987). Thermal spin-flips (Glauber dynamics), cause 
a back and forth variation of the regions’ boundaries, causing a reversible aggregation 
of neighbour clusters with rate &per spin. We focus on the growth of a given embryo 
cluster, whose size s‘ increases with the help of these reversible aggregations, from 1 
to s. An average relaxation time needed for such growth is denoted by r(s). (It should 
not be confused with the relaxation time 5 of the entire system, during which all n, 
attain their equilibrium value!). We first restrict ourselves to the case that s‘ 
aggregates with neighbour ‘dust’ clusters of a fixed size d (lsdss- 1); the corres- 
ponding relaxation time is denoted by ~(s; d) .  The occurence of an s’-d aggregation 
requires that a d-cluster adjoins the boundary of the s’-cluster. The probability for 
that is proportional to nd(AJAd), where A,. and A d  denote the boundary’s area 
(whose nature is discussed later on), fors’ and d ,  respectively, while nd is the number 
of clusters of size d .  The rate growth of s’, due to its aggregation with neighbour d- 
clusters in unit time; is therefore (k,gztd)rzd(AJAd)d. The aggegation however alter- 
nates with fragmentation. The relaxation time r(s; d) is proportional to the sequence 
of such back and forth time-steps. But near to equilibrium only the square root of 
these (random walk-like) steps contributes to the net growth from 1 to s. Hence 
r(s; d)l%OndA,d=s (omitting variation of A,. which is of the order d/s smaller). We 
pause to point out a cardinal difference from Katz et aI (1966), who derive (in our 
notation): [r(s; d)ks,dndA,]’”d=s. They associate the s‘-d aggregation, with a back 
and forth diffusion of the d-clusters, towards the cross-section A,. We however 
associate it with an aggregation of the boundary as a whole unit, with ndA, stationary 
neighbours, alternating with a fragmentation in a succession of time-steps. Returning, 
we write 

z(s; d) (slAs)’(ndd)-2 (3) 
and in particular, t(s; 1) 0~ (s/AJ2n;’. The rate growth of s’ with the help of dust of a 
fixed size d, is proportional to r(s, 4-l. However S I  grows with the help of d ranging 
from 1 to s- 1. Assuming an approximately linear superposition, we get 

s- I 

r(s)-’=r(s; 1)-’ni2 2 (ndd)’=s(s; I)-’. (4) 
d = l  

The last result on the right utilizes standard cluster theory (Stauffer 1979); At 
equilibrium nd=d-Y, where y (usually denoted by r),  is larger than two, so that the 
sum in (4) converges on the lower limit, d+l .  It is worth noting that a down- 
convergent distribution of total mass Zn,s, is to be generally expected, if scaling holds 
whiles increases indefinitely. Far from equilibrium, the back and forth steps become 
forward-alone, but this does not invalidate the sum’s convergence on the lower limit. 
Furthermore, nd decreases even faster than d-Y. Finally, (4) does not depend on 
whether the clusters are fractal or not. Summing up, although an s-cluster may 
aggregate with any dust d ,  the process is dominated by the single step growth, 
s e s  rt 1. On the face of it therefore, CNT is vindicated. Let us, however, take a closer 
look at the problem. In an absence of aggregations involving s, the production dnJdt 
may be expected to be ‘local‘; that is, determined by the flows from s - 1 and s + 1, and 
attaining equilibrium after a time in the order of ~(s). In the presence of cluster- 
cluster aggregation, however, we cannot expect dnJdt to attain equilibrium before all 
the clusters with which it aggregates attain equilibrium as well. The slowest to do so are 
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the biggest. Let, therefore, B, denote an appropriately defined size, which typifies the 
big clusters at time f (second moment of cluster distribution at t ,  for example). 
Referring to our definition of r(s) in (3) and (4). z(BJ denotes the relaxation time 
needed to grow an embryo cluster from size 1 to B,. The present counterpart of the 
'local' altemative of before, is the following: At each instant the production, dn,/dt 
behaves as if it would attain equilibrium only after the growth of embryo B,-clusters is 
essentially completed; that is, after the relaxation time t(B,). Let us consider the 
production of clusters of a given sizes. Suppose that the nucleation is such that, during 
initial time B, is relatively small, so that s 2Bt  (B, is a typical, not a maximal size). The 
attainment of equilibrium by dn,/dt need not then await the 5t-clusters. At some later 
time, however, the typical big clusters 5, have grown larger, so that s<<B, (unless 
s=B,). In that case a 'source and sink' scenario determines the actual production, 
(dnJdf)accud. Assuming first that the sink is absent (i.e. neglecting the aggregation), we 
have a production determined by the local s-sfl growth; that is, equal to 
(dg/dt), of (1). Taking for simplicity n,(O)=O, we obtain n,( m) = + f ( d r ~ J d t ) ~  dt, 
where f increases from 0 to =z(s), during which a cluster growsfrom 1 to s. We now 
evaluate the effect of the sink, and first treat B, as a fixed size. The equilibrium n.( m) 

i s  attained only after the time z(53. To describe the stretching of the time, we 
introduce a scaled variable t '= t[r(BJ/r(s)] ,  and write ns( a) =J(dns/dt)o~ual dt', 
where t' increases from 0 to z(BJ. In order to restore the previous upper limit we 
return to t ,  substituting dr'=dt(dt'ldr). Our integral reads n,(m) = 
I(dn~/dt)..t,,,(dt'/dt)dt, where t increases from 0 to r(s). like before in the sink's 
absence. On the left-hand side too, n,(m) remains,as before, being only slightly 
affected by the presence of B,>>s clusters (see standard theory quoted after (4)). 
Hence scaling implies that the expressions under the integral sign, with and without 
the sink, are equal. Thus 

(dn,/dt),,.,, = (dt'/df)-'(dnJdr)c,,. ( 5 )  
We now allow B, to vary with f. B, represents the typical cluster size, which the 
nucleation process produces after time t (prior to equilibrium). Therefore(!). 

z(B,)=- t-t' =t' /z(s). (6)  
Equation (5) and (6) give 

(dnJdt),,,,,, = (2t)-'r(s)d[R,n,( m)(dQ,/ds)]/ds fors<<5,. (7) 

Equation (7) differs cardinally from (1) in the presence oft-' on the right-hand side. 
Therefore, if an actual rate 'constant' R,,,,,.,,, is calculated with the help of (2) under 
the s<<B, regime. we obtain, 

RS,wuei cc r-'z(s)Rs fors<< B,. (8) 
Equation (I), with the help of a scaling argument, leads to the classical exponential 
decay of the deviation to equilibrium, Qs@=exp(-t/r) (Binder et al 1975, Stauffer 
1992a). Equation (7),  however, because of the extra f;' factor on the right-hand side, 
leads instead to a power law decay. Let us work this out in detail. Since must also 
depend on s, a natural guess is that it constitutes a function of our scaling factor 
r(B,)/)ls(s) = t/t-(s). We propose 

Qs = 1 - co[t/r(s)] -p fors<< B, . (9) 

In order to evaluate the new critical exponent p from (7), we need to substitute the 
scaling dependence of n,(m),  ~(s) and R,. The first, as mentioned already, is 
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n , ( m ) - ~ - ~ ,  withy known from standard theory. The second, z(s), has been calcu- 
lated by a recent theory of critical slowing-down (Alexandrowicz 1992,1993), giving 

5(s) -se where 0 = 2p/[l- 0.295(2p - l)]. (10) 
Here p is a 'geometric' exponent, describing the typical connected length l, 1, of an 
s-cluster (also called chemical distance); it is defined through l,-sp (Alexandrowicz 
1980). Values of p of Ising clusters at equilibrium can be easily measured with the help 
of computer simulation (Alexandrowicz 1990). The last scaling dependence needed, is 
evaluated with the help of the following argument. The constant R, in the CNT 
equation (l), and in our modified equation (7), represents a factor increasing dnJdt. 
The increase is due to the surface A, allowing n,A* molecules ( d = l  clusters) to 
aggregate with s simultaneously in a unit time. As has been shown in (3), the 
consequent increase in the rate, that is in z(s)", is proportional to A: which in turn is 
proportional to s%(s) (see (3) again). Hence 

R, cc A: 0~ s'/z(s). (11) 
The result shows that R, is proportional, not to the boundary's area (as commonly 
assumed in CNT), but to its square! We have, however, already comm-ented on the 
reason, in connection to (3): R, does not represent a cross-section of an s-cluster 
accessible to back and forth diffusing molecules; the back and forth variation is 
attributed instead to the z(s) steps moving the boundary as one whole. Combining 
(10) with (ll), gives R,-s'-'. introducing n, (m) ,  z(s), R, and (9) into (7), and 
performing the differentiations, we find that the powers off and of s on the two sides 
of the equation cancel out. This shows that (9) constitutes a valid solution of (7). The 
remaining coeffi~ents lead to 

cv- I -F e-z/eye. (12) 
Thus our new critical exponent p ,  describing the power law decay of cluster numbers 
towards equilibrium, can be calculated from (E), with the help of the critical slowing- 
down equation (lo), and utilizing simulation results for p. 

Let us recapitulate the behaviour of a nucleation at T -  T, predicted here. The size 
E, of our typical big clusters at time t increases monotonically towards B,. The 
evolution of clusters of a given size s(<<B,), is this: Initially they are absent n,=O. 
Their creation requires t-z(s). At this stage the s > B ,  regime applies, that is 
(dnJdf),,,., is unaffected by the f-dependent B, clusters. Consequently R, is constant, 
and 1 -as decreases exponentially with t. As time goes on, however, we inevitably 
run into the s<<& regime. Equation (8) and (9) take over, i.e. Rs.accuat=f-' and 
1 - QS=P. This agrees excellently with the puzzling recent simulation results 
(Stauffer 1992a, Stauffer 19926, Behrens and Stauffer 1993). These indicate that 
R,,,,.,, is initially constant but ultimately tends to an asymptotic decrease almost 
attaining f-'. (The slight discrepancy is presumably explained by the following: CNT 
treats a binary reaction between s and d = 1. Hence growth rate should be made 
proportional to n, and to n,, like in our equation (3). The omission of n, from (1) 
implies that it is absorbed into R, as a constant. But in the actual simulations, n, still 
increases by about lo%, offsetting somewhat the decrease of Rs,3ctu,). The deviations 
QS too, ultimately decrease as Q = f P  with a constant p ,  as expected. More than that; 
the simulation data at d = 2  (Stauffer 1992b) give, for the dynamic deviation exponent, 
p=0.60(1). The (implicit) result for B (Alexandrowicz 1992, 1993) is B =  1.23(4), 
predicting a remarkable fit p = 0.60(6)! At d= 3 and 4 the results are O(3) = 1.037(25) 
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and 8(4)= 1, respectively, predicting p(3)=0.305(50)~ and p(4) = 113; corresponding 
simulation data forp  are not yet available. 

In summary, the present theory of homogeneous nucleation generalizes the small- 
step s-sf 1, assumption of CNT. by allowing a cluster of size s to grow with the help 
of ‘dust’ clusters of an arbitrary size d. A scaling argument shows that the main 
contribution comes from smallest d (4). so that indeed growth proceeds in s-sa 1 
steps. Consequently the conclusions of the rate equation (1) of CNT hold true, for the 
typical big clusters at a given time t ,  called here B,. However CNT errs in neglecting the 
effect of aggregation altogether: If we focus on clusters whose size s is fixed. the 
behaviour is different. In a nucleation at T -  T, which produces increasingly large B, 
we inevitably attain ans<<B, regime [unlesss-B,( a)]. Under this regime (dn,/dt),,,,l 
is determined by a source and sink scenario: The s-clusters are produced by the 
s++s+l growth; simultaneously however they are consumed when they participate as 
dust in the growth of embryo B, clusters. The latter (much slower) process sets the 
pace with which n, attains equilibrium. This scenario turns out to be amenable to a 
very simple scaling description, which leads to (dnJdt),,.,, of (7), radically different 
from (dnJdt)CNI. of (1). It predicts that a rate ‘constant’ R,,,,,,, derived from 
simulation data, should in fact decrease as t-’ (8). The deviation q S = n 8 / n 3 ( m )  too 
should behave in a surprising manner, notably to decay as a power law 1 - Qs (9), 
instead of the expected l-Q,ocexp(-t/-c). Both predictions are in a quantitative 
agreement with the puzzling results of recent simulations (Stauffer 1992a, Stauffer 
19926, Behrens and Stauffer 1993). Furthermore, combination with a recent theory of 
critical slowing-down (Alexandrowicz 1992, 1993), enables us to calculate the new 
dynamic exponent p ,  in excellent agreement with the simulations. We conclude that 
the present theory for the first time reconciles nucleation with cluster-cluster aggrega- 
tion. It also proposes a joint description of irreversible nucleation. and of critical 
relaxation at equilibrium. 

I wish to thank Dietrich Stauffer, whose relentless questioning of the s-si-1 
assumption stimulated this study, and Janos Kertesz for valuable advice. 
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